
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 7, July 2008, p. 1716 - 1721 
 

Magnetic structure at zigzag edges of bilayer ribbons 
 
 

EDUARDO V. CASTROa,*, N. M. R. PERESb, J. M. B. LOPES DOS SANTOSa 
aCFP and Departamento de Física Faculdade Ciências, Universidade do Porto, P-4169-007 Porto, Portugal 
bCFP and Departamento de Física Faculdade Ciências, Universidade do Minho, P-4710-057, Braga, Portugal 
 

 
 

We study the edge magnetization of bilayer graphene ribbons with zigzag edges. The presence of flat edge-state bands at 
the Fermi energy of undoped bilayer, which gives rise to a strong peak in the density of states, makes bilayer ribbons 
magnetic at the edges even for very small on-site electronic repulsion. Working with the Hubbard model in the Hartree Fock 
approximation we show that the magnetic structure in bilayer ribbons with zigzag edges is ferromagnetic along the edge, 
involving sites of the two layers, and antiferromagnetic between opposite edges. It is also shown that this magnetic 
structure is a consequence of the nature of the edge states present in bilayer ribbons with zigzag edges. Analogously to the 
monolayer case, edge site magnetization as large as m≈0.2 μB (per lattice site) even at small on-site Hubbard repulsion 
U≈0.3 eV is realized in nanometer wide ribbons.  
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1. Introduction  

 
Graphene, the two dimensional allotrope of carbon, 

has recently been attracting a great deal of attention. Since 
its isolation three years ago [1] a plethora of unusual and 
interesting properties has been revealed [2,3].From the 
point of view of fundamental physics, low-energy quasi-
particles in graphene behave like massless Dirac fermions 

propagating at an effective velocity of light v≈106ms−2. A 
rather unusual physics is then observed, where the half-
integer quantum Hall effect is a paradigmatic 
example [4,5] Graphene is also regarded with great 
expectations from the point of view of technological 
applications. Stability and ballistic transport on the 
submicrometer scale, even at room-temperature, make 
graphene based electronics a promising possibility. 

The possibility of creating stacks of graphene layers 
with the accuracy of a single atomic layer, providing an 
extra dimension to be explored, is another advantage of 
graphene for electronic applications. Of particular interest 
to us is the double layer of graphene – the bilayer. Bilayer 
graphene has shown to have unusual electronic properties, 
though unexpectedly dissimilar to those exhibited by its 
single layer parent. The new type of integer quantum Hall 
effect observed in bilayer grapheme [6,7] which is induced 
by chiral parabolic bands, is an example of its uniqueness. 
From the point of view of applications, bilayer graphene is 
even more promising for some electronic devices. It has 
recently been shown that the band structure of bilayer 
graphene can be controlled externally by an applied 
electric field so that an electronic gap between the valence 
and conduction bands can be tuned in a controllable way 
[8-10]. This makes the bilayer graphene the only known 
semiconductor with a tunable energy gap and may open 
the door for potential applications on atomic-scale 
electronic devices [11]. 

Among the uncommon features of monolayer 
graphene we find the rather different behavior of the two 
possible (perfect) terminations: zigzag and armchair. 
While zigzag edges support localized states, armchair 
edges do not [12-14].   These edge states occur at zero 
energy, the same as the Fermi level of undoped graphene, 
meaning that low energy properties may be substantially 
altered by their presence. The self-doping phenomenon 
[15], the edge magnetization with consequent gap opening 
in graphene nanoribbons [16], and half-metallicity [17] are 
examples of edge states driven effects. 

The presence of zero energy edge states at zigzag 
edges of bilayer graphene has recently been confirmed 
assuming a first nearest-neighbor tight-binding model 
[18]. Two families of edge states has been found to coexist 
in the bilayer: monolayer edge states, with finite amplitude 
on a single plane; and bilayer edge states, with finite 
amplitude on both planes, and with an enhanced 
penetration into the bulk. As in single layer graphene, 
bilayer edge states show up in the electronic spectrum as 
flat bands at zero energy – the Fermi energy of undoped 
bilayer. These non-dispersive bands gives rise to a strong 
peak in the density of states right at the Fermi energy, 
which brings about the question of spontaneous magnetic 
ordering due to electron-electron interactions. 

In the present paper we study the magnetic structure 
of zigzag bilayer graphene ribbons induced by electron-
electron interactions, which are included through the 
Hubbard model. Working within the Hartree Fock 
approximation we show that due to the presence of edge 
states, which induce a strong peak in the density of states 
at the Fermi energy, zigzag bilayer ribbons show edge 
magnetization even for very small on-site electronic 
repulsion. Moreover, it is shown that the spin 
configuration is ferromagnetic along the edge, with 
parallel spins occurring on both layers, and 
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antiferromagnetic between opposite ribbon edges. Such a 
magnetic ordering can be interpreted as being a 
consequence of the edge state structure in bilayer 
graphene. 

The paper is organized as follows: in Sec.  we present 
the model and the mean field decoupling used here; for a 
better interpretation of our results we review briefly in 
Sec.  the edge states for non-interacting zigzag bilayer 
ribbons; in Sec.  we present and discuss the results of this 
work; we close with conclusions in Sec. . 

 
 
2. Model and field treatment 

 
The study of the magnetic structure in AB−stacked 

bilayer graphene given here is based on the ribbon 
geometry with zigzag edges shown in Fig. 0.1. We use 
labels 1 and 2 for the top and the bottom layers, 
respectively, and labels Ai and Bi for each of the two 
sublattices in layer i. Each four-atom unit cell 
(parallelograms in Fig. 0.1) has integer indices 
m (longitudinal) and n (transverse) such that ma1+na2 is 

its position vector, where a1=a(1,0)  and 

a2=a(1,− 3)/2  are the basis vectors and a≈2.46Å is 

the lattice constant. The simplest model one can write to 
describe non-interacting electrons in AB-stacked bilayer is 
the first nearest-neighbor tight-binding model given by,  
 

                                  HTB= ∑
i=1

2
 HTB,i+H⊥,                (1) 

with,  
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where ai,σ(m,n)  [bi,σ(m,n) ] is the annihilation 

operator for the state in sublattice Ai (Bi), i=1,2, at position 
(m,n), and spin σ=↑,↓. The first term on the right hand 
side of Eq. (1) describes in-plane hopping, t≈2.7eV, while 
the second term parametrizes the inter-layer coupling, 

1/^ ≤tt . In order to examine the magnetic polarization 
due to electron-electron interactions we add the Hubbard 
term to Eq.1. The total Hamiltonian describing the bilayer 
system reads,  
 
 H=HTB+HU,                            (4) 

 
where HU represents the on-site Coulomb interaction, 
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The Hubbard model is a good starting point to study 
magnetism whenever the density of states at the Fermi 
energy is large enough to produce effective screening of 
the Coulomb interaction. This is true for the clean bilayer, 
where a finite density of states at the neutrality point 
produces some amount of screening in the system [19]. It 
is certainly the case in the presence of zigzag edges, where 
the density of states peak at the Fermi energy implies very 
effective screening. 

 

 
m- 1 m m+1       m+2 

 
Fig. 0.1. Ribbon geometry with zigzag edges for bilayer 

graphene. 
 
 

The system Hamiltonian in Eq. (4) is treated here 
within mean-field theory. In the Hartree Fock 
approximation the mean-field version of Eq. (4) reads,  
 

HMF=HTB+H
MF
U ,                       (6) 

with 
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where n %Γi,σ(m,n)  is the electronic density for spin 

σ=↑,↓ at the site of sublattice Γ=A,B and layer i=1,2 of the 
cell (m,n). The electronic spin densities n %Γi,σ(m,n)  
have to be determined self-consistently through, 
 

MFiisiA nmanmanmn ),(),(),( ,
†

,* σσ=%                (8)                  

MFiisiB nmbnmbnmn ),(),(),( ,
†
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where the average 
MF

 is done with the mean-field 
Hamiltonian in Eq. (6). Quantum fluctuations, which are 
ignored within mean-field theory, are expected to reduce 
the magnetic moments but not to change significantly the 
overall magnetic structure. As a further approximation we 
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assume that the self-consistent solution of Eqs. (8) and (9) 
is m independent, i.e., 
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where L is the longitudinal ribbon length. We can justify 
this approximation here because we are mainly interested 
on the study of edge magnetization when edge states are 
present, and, as we will see in Sec. III, edge states are 
homogeneous along the edge. Note, however, that we keep 
the sublattice index in Eqs. (10) and (11), meaning that we 
can still have in-cell inhomogeneity. 
Without loss of generality we assume that the ribbon in 
Fig. 0.1 has N unit cells in the transverse cross section (y 
direction) with n∈{0,…,N−1}, and we use periodic 
boundary conditions along the longitudinal direction (x 
direction). Noting the translational invariance of the ribbon 
along the x direction, and having Eqs. (10) and (11) in 
mind, it is easy to diagonalize Hamiltonian (6) with 
respect to the m index just by Fourier transform along the 
longitudinal direction, H= ∑

k
 Hk, with Hk given by,  

 

               Hk=HTB,k+H
MF
U,k,                  (12) 

where,  
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and, 
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with self-consistent spin densities given by Eqs. (10) 
and (11), which can be rewritten as, 
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All conclusions presented in Sec.  regarding the magnetic 
structure of zigzag bilayer ribbons are drawn by solving 
Eqs. (12-16). 
 
 
 

3. Edge states in the non-interacting limit 
 
It is shown in Sec IV.  that the results for the edge 

magnetization of zigzag bilayer ribbons are a consequence 
of the edge state structure found in this system [18]. In this 
section we briefly review the main features of bilayer edge 
states for U=0 in Eq.(4), i.e., in the absence of interactions. 

 

 
 

Fig. 0.2. (Color online) (a) - Energy spectrum for a 
graphene bilayer ribbon with zigzag edges for N=400. 
(b) - Zoom in of panel (a). (c) - Charge density of the 
edge states at k/2π=0.36. (d) - The same as in (c) at 
k/2π=0.364. The interlayer coupling was set to t⊥/t=0.2  

                                    in all panels. 
 
 

The band structure of a bilayer ribbon with zigzag 
edges is shown in Fig. 0.2 (a) for N=400, obtained by 
numerically solving Eq. (13). We can see the partly flat 
bands at E=0 for k in the range 2π/3≤ka≤4π/3, 
corresponding to four edge states, two per edge. The zoom 
shown in Fig. 0.2 (b) for ka≈2π/3 clearly shows that there 
are four flat bands. 

In order to understand the spatial structure of edge 
states in bilayer graphene we solve the Schrödinger 
equation, HTB,k | >μ,k =Eμ,k | >μ,k , for Eμ,k=0 , 

where μ labels the eigenstate index including spin. First 
we note that Hamiltonian HTB,k  in Eq. (13) effectively 

defines a 1D problem in the transverse direction of the 
ribbon. It is then possible to write any eigenstate | >μ,k  as 
a linear combination of the site amplitudes along the cross 
section 
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where the four terms per n refer to the four atoms per unit 
cell, to which we associate the one-particle states 

| >ci,k,n,σ =c
†
i,σ(k,n) | >0 , with ci,σ=ai,σ,bi,σ , 

spin σ=↑,↓, and i=1,2. To account for the finite width of 
the ribbon we require the following boundary conditions,  
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α1(k,N)=α2(k,N)=β1(k,−1)=β2(k,−1)=0. (18) 

 
After solving the Shrödinger equation for zero energy and 
the boundary conditions in Eq. (18) we find four possible 
eigenstates per k, where the only nonzero coefficients for 
each of them are given by [18]: 
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where Dk=−2cos(ka/2) and n=N−n'−1, with 

n'∈{0,…,N−1}. As is easily seen, the coefficients in 
Eqs. (20-26) give convergent wave functions only if 
2π/3<ka<4π/3, in which case they represent zero energy 
states localized at the surface – edge states – and provide 
an explanation for the four flat zero energy bands in 
Fig. 0.2 (a) and (b). Note, however, that the solutions given 
by Eqs. (20-26) are exact eigenstates only for semi infinite 
systems, where the boundary conditions given in Eq. (18) 
are fully satisfied. In a finite ribbon overlapping of the 
four edge states leads to a slight dispersion and non-
degeneracy. Nevertheless, as long as the ribbon width is 
sufficiently large, this effect is only important at ka≈2π/3 
and ka≈4π/3 where the localization length is large enough 
for the overlapping to be appreciable [14]. For 
completeness we give the normalization constants 
appearing in Eqs. (20-26), 
 

 |α2(k,0)|2=|β1(k,N−1)|2  =1−D
2
k,    (23) 
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An example of the charge density associated with 
Eq. (22) is shown in panels (c) and (d) of Fig. 0.2 for 

t⊥/t=0.2, where the |α1(k,n)|2  dependence can also be 

seen as the solution given by Eq. (20) for |α2(k,n)|2 , 

apart from a normalization factor. Of particular interest to 
understand the magnetic structure due to interaction 
effects is the fact that edge states in zigzag bilayer 
graphene are such that at one edge they live only on 
sublattice A whereas at the opposite edge they live on 
sublattice B. 

 

 
 

Fig. 3. Dependence of the magnetization 
m=n %Ai,↑−n %Ai,↓ , with i=1,2, on the interaction 

parameter U for different ribbon widths N. The shown 
magnetizations were computed at sites n=0, n=1, and at 
the middle of the ribbon. Solid lines are for the upper 
layer (i=1) and dashed lines for the bottom layer (i=2). 
The result for graphite double sheet (bulk bilayer) is also  
                                        shown. 

 
 

4. Results and discussion 
 
In Fig. 3 the results for the local magnetization 

m=n %Ai,↑−n %Ai,↓ , for i=1,2, are shown as a function of 
the Hubbard parameter U for different ribbon widths N. 
For each ribbon width we have computed the local 
magnetization at sites of the A sublattice belonging to cells 
n=0, n=1, and right at the middle of the ribbon (see 
Fig. 0.1). The first conclusion we can draw is that sites 
near the edge get polarized even for very small U, while 
sites in the middle of the ribbon behave like bulk 
bilayer [20]. Another interesting feature shown in Fig. 3 is 
that at the considered edge the magnetization of A2 sites is 
larger than that of A1 sites, an asymmetry that vanishes 
away from the edge. We will come back to this below. As 
regards the B sublattice its magnetization (not shown in 
Fig. 3) is always similar to the bulk result even right at the 
edge (n=0). However, when we move to the opposite edge, 
the A and B sublattices change roles: B sites at the opposite 
edge get polarized for very small U while A sites show the 
bulk result. The conclusion then is that edge magnetization 
involving different sublattices at opposite edges is 
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showing up in zigzag bilayer ribbons, even for very small 
U. In particular we get m≈0.2μB right at the edge for 

U=0.1t≈0.3eV, similar to what is found in graphene [12]. 
 

 
 

Fig. 0.4. (Color online) Magnetization 
m=n %Γi,↑−n %Γi,↓  along the ribbon cross section for 

the Γi=A1,A2,B1,B2. Three different ribbon widths were 
considered:  N = 50, 200, 400  from  top  to  bottom.  The 
             interaction parameter was set to U=0.1t. 

 
 
 

A better understanding of the edge magnetization is 
achieved by fixing U and plotting the local magnetization 
m=n %Γi,↑−n %Γi,↓  across the ribbon section for 

Γi=A1,A2,B1,B2. This is done in Fig. 0.4 for different 
ribbon widths and for a fixed interaction parameter 
U=0.1t. As is clearly seen, for such a small interaction 
only the edges are polarized. Moreover, the edge 
magnetization is opposite on opposite edges –
 antiferromagnetic arrangement across the ribbon. Also, 
we can see that at the edge starting with cell n=0 only 
sublattice A has a finite magnetization, whereas at the 
opposite edge only sublattice B has non-vanishing 
magnetization. Finally, it is also apparent that at each edge 
the non-zero sublattice magnetization has same sign in 
both layers – ferromagnetic arrangement along the edge. 
These observations are consistent with first-principles 
density-functional calculations of the magnetic structure of 
graphitic fragments (infinite number of layers) [21]. 

We have seen in Sec.III  that bilayer edge states have 
the following property: at the edge starting with n=0 they 
live only on sublattice A, while at the opposite edge they 
live only on sublattice B, as given by Eqs. (20-26). The 
above results for the edge magnetization may therefore be 
attributed to the polarization of edge states in order to 
reduce on-site Coulomb energy. This interpretation also 
provides an explanation for the layer difference in local 
magnetization. As mentioned before, it can be seen in 
Fig. 3 that the magnetization at A2 sites is higher than at 
A1 sites for the edge starting with n=0. If we recall 
Eqs. (20) and (22) for the wave function amplitudes at the 

considered edge we immediately see that while the two 
edge state families contribute to A2 only one has finite 
amplitude at A1 sites. The same is true for B1 and B2 sites, 
in agreement with Eqs. (24) and (26). As regards the 
antiferromagnetic polarization between edge states living 
in opposite edges, it guarantees a ground state with zero 
total magnetization, as it is known to be the case for the 
half-filled Hubbard model. 

Finally we note that edge magnetization gives rise to a 
finite gap at the Fermi level, in complete analogy to 
monolayer graphene [16]. Half-metallicity has been 
predicted for zigzag single layer ribbons due to the edge 
magnetization and the presence of a finite gap [17]. We 
expect that bilayer ribbons also become half-metallic, with 
an extra switching capability owing to the effect of a 
perpendicular electric field [9,10]. 

 
 
5. Conclusions 

 
We have studied the edge magnetization in bilayer 

graphene ribbons with zigzag edges. The presence of flat 
edge-state bands at the Fermi energy of undoped bilayer, 
which gives rise to a strong peak in the density of states, 
makes bilayer ribbons magnetic at the edges even for very 
small on-site electronic repulsion. Using the Hubbard 
model in the Hartree Fock approximation we have shown 
that the magnetic structure in bilayer ribbons with zigzag 
edges is ferromagnetic along the edge, involving sites of 
the two layers but belonging to the same sublattice, and 
antiferromagnetic between opposite edges and involving 
sites of different sublattices. This magnetic structure is a 
consequence of the nature of the edge states present in 
bilayer ribbons with zigzag edges. 
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